Cauchy Characterization of Enriched Categories

نویسنده

  • ROSS STREET
چکیده

A characterization is given of those bicategories which are biequivalent to bicategories of modules for some suitable base. These bicategories are the correct (non elementary) notion of cosmos, which is shown to be closed under several basic constructions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence and quantale-enriched categories

Generalising Nachbin's theory of ``topology and order'', in this paper we   continue the study of quantale-enriched categories equipped with a compact   Hausdorff topology. We compare these $V$-categorical compact Hausdorff spaces   with ultrafilter-quantale-enriched categories, and show that the presence of a   compact Hausdorff topology guarantees Cauchy completeness and (suitably   defined) ...

متن کامل

Symmetry and Cauchy Completion of Quantaloid-enriched Categories

We formulate an elementary condition on an involutive quantaloidQ under which there is a distributive law from the Cauchy completion monad over the symmetrisation comonad on the category of Q-enriched categories. For such quantaloids, which we call Cauchy-bilateral quantaloids, it follows that the Cauchy completion of any symmetric Q-enriched category is again symmetric. Examples include Lawver...

متن کامل

Categorical Structures Enriched in a Quantaloid: Categories, Distributors and Functors

We thoroughly treat several familiar and less familiar definitions and results concerning categories, functors and distributors enriched in a base quantaloidQ. In analogy with V-category theory we discuss such things as adjoint functors, (pointwise) left Kan extensions, weighted (co)limits, presheaves and free (co)completion, Cauchy completion and Morita equivalence. With an appendix on the uni...

متن کامل

Completeness in Generalized Ultrametric Spaces

Γ-ultrametric spaces are spaces which satisfy all the axioms of an ultrametric space except that the distance function takes values in a complete lattice Γ instead of R≥0. Γ-ultrametric spaces have been extensively studied as a way to weaken the notion of an ultrametric space while still providing enough structure to be useful (see for example [17], [18], [8]). The many uses of Γ-ultrametric sp...

متن کامل

Lawvere Completeness in Topology

It is known since 1973 that Lawvere’s notion of (Cauchy-)complete enriched category is meaningful for metric spaces: it captures exactly Cauchy-complete metric spaces. In this paper we introduce the corresponding notion of Lawvere completeness for (T,V)-categories and show that it has an interesting meaning for topological spaces and quasi-uniform spaces: for the former ones means weak sobriety...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004